Matrix Decomposition
In the mathematical discipline of linear algebra, a matrix decomposition or matrix factorization is a factorization of a matrix into a product of matrices.
개요
경량 딥러닝 기술은
- 경량 딥러닝 알고리즘 연구: 알고리즘 자체를 적은 연산과 효율적인 구조로 설계하여, 기존 모델 대비 효율을 극대화
- 알고리즘 경량화 기술: 만들어진 모델의 파라미터들을 줄이는 모델 압축(Model Compression) 등의 기법이 적용

-
- 이진화(Binarization) 딥러닝에 사용되는 가중치의 부동 소수점 수를 0과 1로 표현하여, 그 크기를 줄이는 방법도 고려
Application(model compression and acceleration)
- Matrix factorization was widely studied in the deep learning domain for model compression and acceleration
LadaBERT
- 참고 https://arxiv.org/pdf/2004.04124.pdf
- LadaBERT is based on an iterative hybrid model compression framework consisting of weighting pruning, matrix factorization and knowledge distillation
- The architecture and weights of student model are inherited from the BERT teacher
- In each iteration, the student model is first compressed by a small ratio based on weight pruning and matrix factorization
- weight pruning and matrix factorization help to generate better initial and intermediate status in the knowledge distillation iterations,
- the accuracy and efficiency of model compression can be greatly improved.